UniS-MMC: Multimodal Classification via Unimodality-supervised Multimodal Contrastive Learning

Heqing Zou, Meng Shen, Chen Chen, Yuchen Hu, Deepu Rajan, Eng Siong Chng Nanyang Technological Universityy, Singapore

{heqing001, meng005, chen1436, yuchen005}@e.ntu.edu.sg, {asdrajan, aseschng}ntu.edu.sg

ACL 2023

https://github.com/Vincent-ZHQ/UniS-MMC

Introduction

Despite their effectiveness in learning the correspondence among modalities, these contrastive-based multimodal learning methods still meet with problems with the sensor noise in the in-the-wild datasets

The current methods always treat each modality equally and ignore the difference of the role for different modalities, The final decisions will be negatively affected by those samples with inefficient unimodal representations and thus can not provide trustworthy multimodal representations.

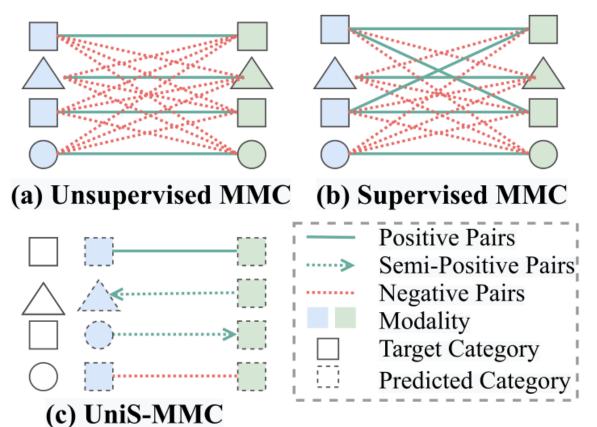


Table 1: Contrastive settings.

Uni-Prediction	Modality a	Modality b	Category
0	True	True	Positive
1	True	False	Semi-positive
2	False	True	Semi-positive
3	False	False	Negative

Figure 3: The relationship comparison between two modalities in training mini-batch of (a) unsupervised MMC, (b) supervised MMC and (c) UniS-MMC.

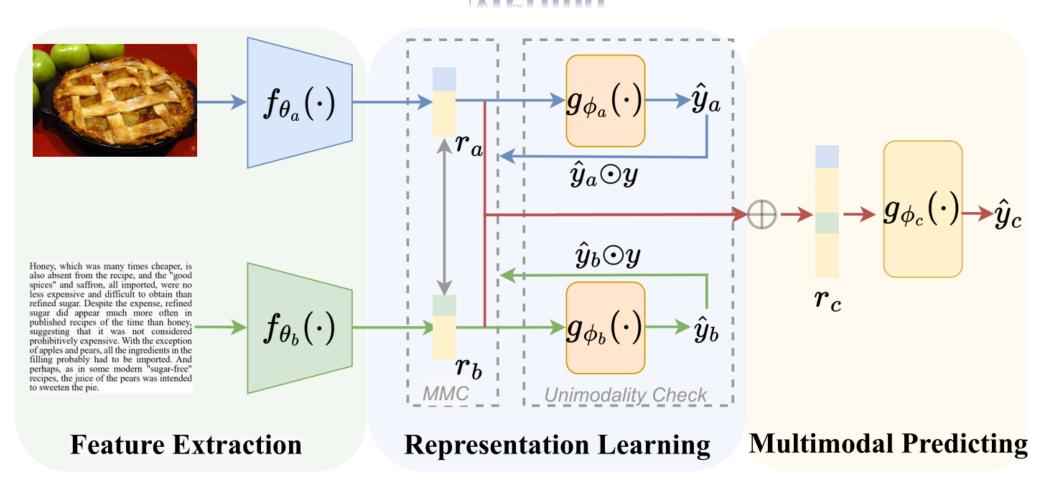
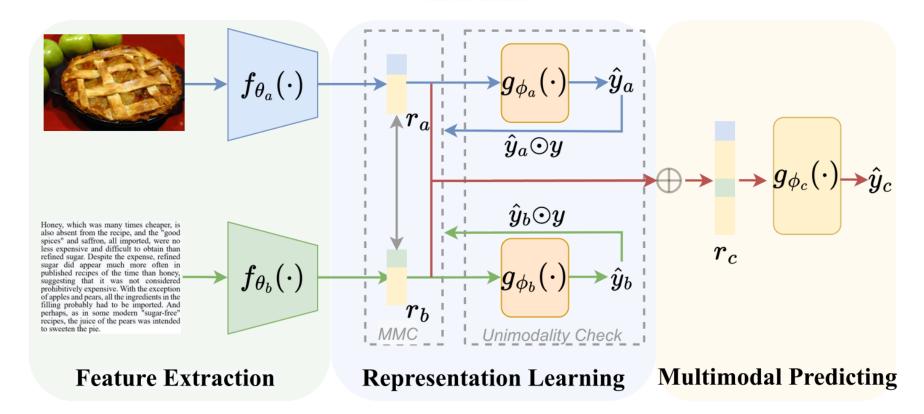
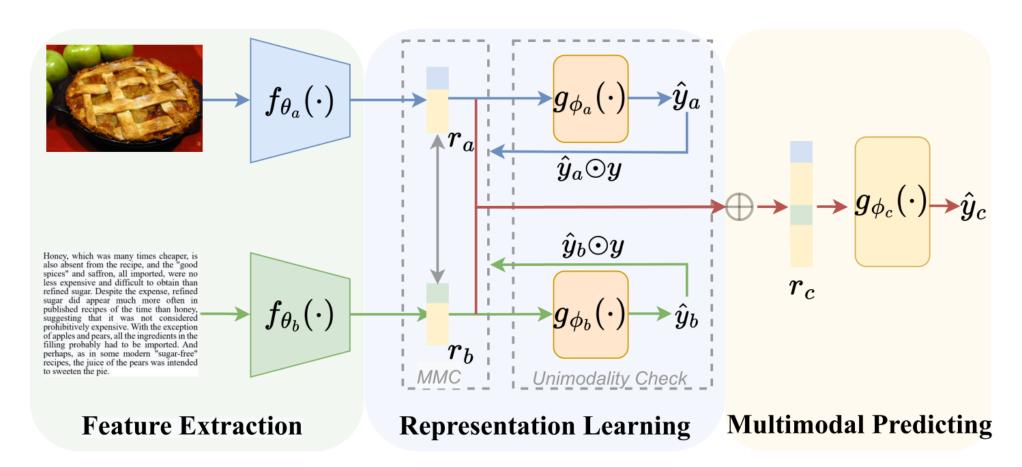


Figure 2: The framework for our proposed UniS-MMC.



$$\mathcal{L}_{uni} = -\sum_{m=1}^{M} \sum_{k=1}^{K} y^k \log p_m^k, \qquad (1) \qquad \mathcal{L}_{mmc} = \sum_{i=1}^{M} \sum_{j>i}^{M} \mathcal{L}_{b-mmc}(m_i, m_j), \qquad (3)$$

$$\mathcal{L}_{b-mmc} = -\log \frac{\sum_{n \in \mathbb{P}, \mathbb{S}} (\exp(\cos(r_a^n, r_b^n)/\tau)}{\sum_{n \in \mathbb{B}} (\exp(\cos(r_a^n, r_b^n)/\tau)}, \quad (2) \qquad \mathcal{L}_{multi} = -\sum_{k=1}^K y^k \log p_k^k, \quad (4)$$

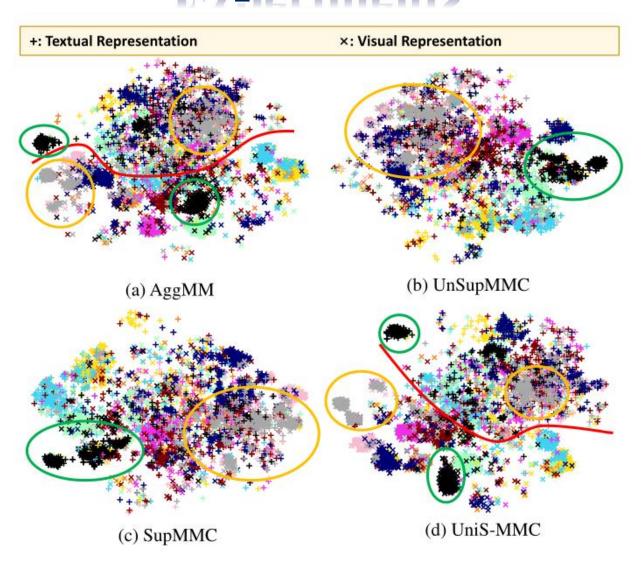


$$\mathcal{L}_{UniS-MMC} = \mathcal{L}_{uni} + \mathcal{L}_{multi} + \lambda \mathcal{L}_{mmc}, \qquad (5)$$

Table 2: Comparison of multimodal classification performance on a) Food101 and b) N24News.

a) Model	Fusion		Back	Acc	
	AGG ALI		Image	Text	
MMBT	Early	X	ResNet-152	BERT	$92.1_{\pm 0.1}$
HUSE	Early	✓	Graph-RISE	BERT	92.3
ViLT	Early	✓	ViT	BERT	92.0
CMA-CLIP	Early	✓	ViT	Transformer	93.1
ME	Early	X	DenseNet	BERT	94.6
AggMM	Early	Х	ViT	BERT	$93.7_{\pm 0.2}$
UnSupMMC	Early	✓	ViT	BERT	$94.1_{\pm 0.7}$
SupMMC	Early	✓	ViT	BERT	$94.2_{\pm0.2}$
UniS-MMC	Early	1	ViT	BERT	94.7 _{±0.1}

b) Model	Fusion		Backbone		Multimodal		
	AGG	ALI	Image	Text	Headline	Caption	Abstract
N24News	Early	X	ViT	RoBERTa	79.41	77.45	83.33
AggMM UnSupMMC SupMMC UniS-MMC	Early	√ ✓	ViT ViT ViT ViT	BERT BERT BERT BERT	$78.6_{\pm 1.1} \\ 79.3_{\pm 0.8} \\ 79.6_{\pm 0.5} \\ \textbf{80.2}_{\pm 0.1}$	$76.9_{\pm 0.3}$ $77.3_{\pm 0.2}$	$81.9_{\pm 0.3}$
AggMM UnSupMMC SupMMC UniS-MMC	Early	1	ViT ViT ViT ViT	RoBERTa RoBERTa RoBERTa RoBERTa	$79.9_{\pm 0.2}$ $79.9_{\pm 0.4}$	$78.0_{\pm 0.1}\atop 77.9_{\pm 0.2}$	$83.7_{\pm 0.3} \\ 84.0_{\pm 0.2}$



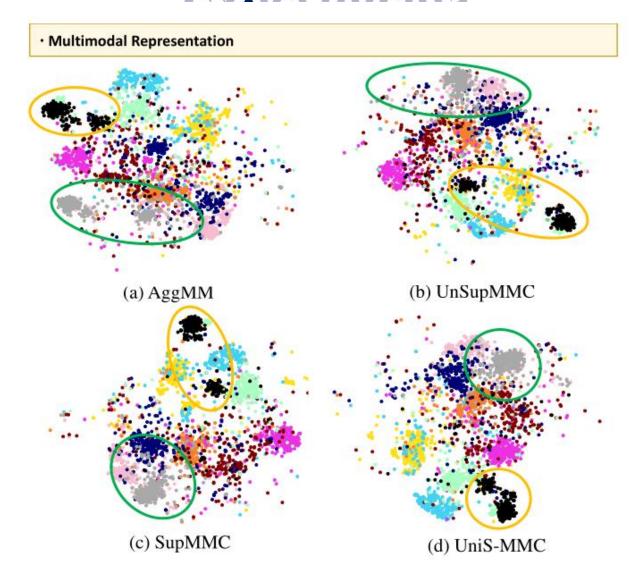


Table 3: Comparison to unimodal learning and the baseline model on N24News.

Dataset	Text Image-only		BERT-based			RoBERTa-based		
Dataset	20/20	image only	Text-only	AggMM	UniS-MMC	Text-only	AggMM	UniS-MMC
N24News	Headline Caption Abstract	$54.1_{\pm 0.2}$	$72.7_{\pm 0.3}$	$76.8_{\pm 0.2}$	$80.2_{\pm 0.1} \uparrow 1.6$ $77.5_{\pm 0.3} \uparrow 0.7$ $83.2_{\pm 0.4} \uparrow 2.4$	$72.9_{\pm 0.4}$	$77.9_{\pm 0.3}$	$80.3_{\pm 0.1} \uparrow 1.4$ $78.1_{\pm 0.2} \uparrow 0.3$ $84.2_{\pm 0.1} \uparrow 0.7$

Table 4: Ablation study on N24News.

Method	Неа	dline	Caj	ption	Abstract		
	BERT	RoBERTa	BERT	RoBERTa	BERT	RoBERTa	
AggMM	$78.6_{\pm 1.1}$	$78.9_{\pm0.3}$	$76.8_{\pm 0.2}$	$77.9_{\pm0.3}$	$80.8_{\pm 0.2}$	$83.5_{\pm 0.2}$	
+ L_{uni}	$79.4_{\pm0.4}$	$79.4_{\pm 0.3}$	$77.3_{\pm0.2}$	$77.9_{\pm 0.1}$	$82.5{\scriptstyle\pm0.3}$	$84.1_{\pm 0.2}$	
+ C_{Semi}	$80.1_{\pm 0.1}$	$80.0_{\pm 0.3}$	$77.3_{\pm0.2}$	$78.0_{\pm 0.3}$	$82.7_{\pm 0.4}$	$84.2_{\pm 0.3}$	
+ C_{Neg}	80.2 $_{\pm 0.1}$	$\textbf{80.3}_{\pm0.1}$	77.5 $_{\pm 0.3}$	78.1 $_{\pm 0.2}$	83.2 $_{\pm 0.4}$	$84.2_{\pm 0.1}$	

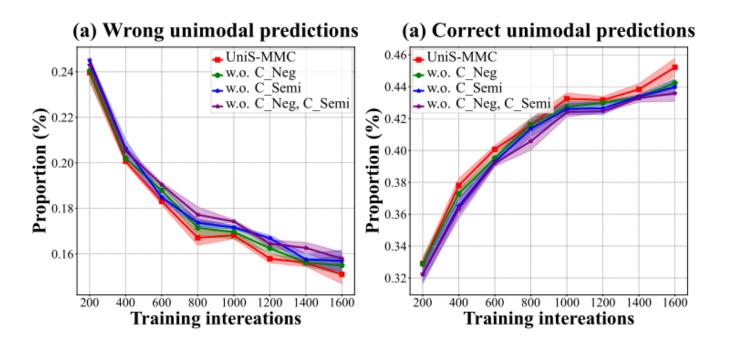


Figure 6: As the training progresses, the change of the proportion of both wrong (left), both correct (right) unimodal predictions of the validation set (N24News): the complete method (UniS-MMC), remove negative pair (w.o. C_Neg), remove semi-positive pair (w.o. C_Semi) and remove both (w.o. C_Neg,C_Semi).

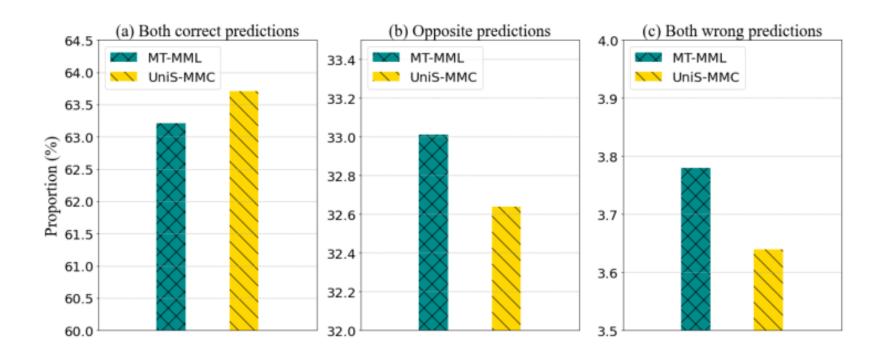


Figure 7: Consistency comparison of unimodal prediction between MT-MML and the UniS-MMC.